
MATHEMATICS OF COMPUTATION
VOLUME 60, NUMBER 201
JANUARY 1993, PAGES 407-420

COUNTING POINTS ON ELLIPTIC CURVES OVER F2m

ALFRED J. MENEZES, SCOTT A. VANSTONE, AND ROBERT J. ZUCCHERATO

ABSTRACT. In this paper we present an implementation of Schoof s algorithm
for computing the number of F2m-points of an elliptic curve that is defined over
the finite field F2m . We have implemented some heuristic improvements, and
give running times for various problem instances.

1. INTRODUCTION

The use of elliptic curves in public key cryptography was first proposed by
N. Koblitz [5] and V. Miller [10]. Since then, a significant amount of research
has been done on the implementation of practical and secure cryptosystems
based on elliptic curves. For a secure system, one should select a curve E over
a finite field Fq such that the order, #E(Fq), of the group of points has a large
prime divisor. There are some families of curves whose orders are trivial to
compute (see [7] for some examples). However, if a random curve is chosen,
then it is necessary to have an efficient algorithm for computing its order.

In 1985, Schoof [13] gave a polynomial-time algorithm for computing #E(Fq).
The algorithm has a running time of O(log8 q) bit operations, and is rather
cumbersome in practice. In [3] the authors combined Schoof s algorithm with
Shanks' baby-step giant-step algorithm, and were able to compute orders of
curves over Fp, where p is a 27-decimal-digit prime. The algorithm took 4.5
hours on a SUN-1 SPARC station.

The work mentioned above was all described for the case q odd. From a
practical point of view, however, curves over fields of characteristic 2 are more
attractive, since the arithmetic in F2m is easier to implement in hardware than
the arithmetic in Fq, q odd. In [6] Koblitz adapted Schoof s algorithm to
curves over F2m and studied the implementation and security of a random-
curve cryptosystem. Special emphasis was placed on the underlying field F2135 .
Recently, Agnew, Mullin, and Vanstone [1] have developed a VLSI device to
perform arithmetic in F2,55 and to perform computations on a random elliptic
curve over this field. Consequently, it is of interest to determine the order of
random curves over F2,55.,

We have implemented Schoof s algorithm for counting the points on an ar-
bitrary curve over F2m, and have employed some heuristics to improve the
actual running time. We are able to compute #E(F2m) for m = 155 (and so
#E(F2m) 1047) in about 61 hours on a SUN-2 SPARC station.

Received by the editor February 20, 1992.
1991 Mathematics Subject Classification. Primary 1 lY40, 1lT71; Secondary 94A60, 68P25,

1 Y16.

(? 1993 American Mathematical Society
0025-5718/93 $1.00 + $.25 per page

407

408 A. J. MENEZES, S. A. VANSTONE, AND R. J. ZUCCHERATO

The remainder of the paper is organized as follows. In ?2, we mention the
relevant properties of elliptic curves over finite fields of characteristic 2. In ?3,
we outline Schoof s algorithm, and in ?4 we present our heuristics for improving
Schoof s algorithm. Section 5 discusses details of our implementation, and gives
some running times for various problem instances. Finally, in ?6, we survey the
latest research on the problem of counting points on an elliptic curve.

2. ELLIPTIC CURVES IN CHARACTERISTIC 2

Let q = 2m, and let K = Fq be the finite field of q elements. We denote the
algebraic closure of K by K. If S is a field or an additive group, then S* will
denote the nonzero elements of S. There are two types of elliptic curves over
K. A supersingular curve E over K is the set of solutions (x, y) E K x K to
an equation of the form

(1) y 2+ a3y=X 3+a4x+a6,

with a3, a4, a6 E K, a3 : 0, together with the "point at infinity" denoted 6.
A nonsupersingular curve E over K is the set of solutions (x, y) E K x K to
an equation of the form

(2) y2 +xy = X3+ a2X2+ a6,

with a2, a6 E K, a6 : 0, together with the point & .
If L is any field with K C L C K, then let E(L) denote the set of points

in E both of whose coordinates lie in L, together with the point a.
There are precisely three isomorphism classes of supersingular elliptic curves

over K if m is odd, and seven classes if m is even. The number of points
on a curve in each class is known [9]. Given a supersingular curve (1), we can
then compute #E(K) by determining the isomorphism class that E belongs to.
For the remainder of the paper we will thus be interested in computing #E(K),
where E is a nonsupersingular elliptic curve.

There are 2q - 2 isomorphism classes of nonsupersingular curves over K.
A set of representatives of these classes is

{y2 +xy=x3 +a2x2 +a6la6 EK*, a2 E {O, y}},

where y E K is a fixed element of trace 1. If E and E are the curves y2 +xy =
x3 + a6 and y2 + xy = X3 + yx2 + a6, respectively, then it is easily verified that
#E(K) + #E(K) = 2q + 2. Henceforth we will always assume that the equation
for E is of the form

(3) y2 +xy=X3 +a6, a6 EK*.

It is well known that E has the structure of an abelian group, with the point
a serving as its identity element. The rules for adding points on the curve (3)
are the following. Let P = (x1, Yi) E E* ; then -P = (xl1, yI +xI) . Notice that
P and -P have the same x-coordinates. If Q = (X2, Y2) E E* and Q f -P,
then P + Q = (X3, Y3), where

I YI +Y2)
2

Y1 +Y X

lX6 +X2,
+

XI +X2
~Xj +X2 P = Q,

COUNTING POINTS ON ELLIPTIC CURVES OVER F2m 409

and
Y +Y2) (Xl+X3)+X3+YI, P#Q,

l X2 + (XI + Xl X3 + X3, p = Q

If K C L C K, then E(L) is a subgroup of E. If L is finite with #L =qr,

then Hasse's theorem states that

#E(L) = qr + 1 -t

where Itd < 2 /4r. Thus, to compute #E(L), it suffices to compute t.
Let n be a positive integer, and let Zn denote the cyclic group of n elements.

The group E(K) has rank either 1 or 2; we can write E(K) Znl E Zn2, where
n2in, and n2jq - 1. A point P E E is called an n-torsion point if nP =

Let E[n] denote the group of n-torsion points in E. If gcd(n, q) = 1, then
E[n] -Zn 7 Zn . If n = 2e, then either E[n] {a} if E is supersingular, or
else E[n] 7Zn if E is nonsupersingular.

We introduce the division polynomials fn E K[x] associated with the non-
supersingular curve E given by the equation (2) (see [6]):

fo=O, fi=1, f2=x, f3=x4 +x3 +a6, f4 = x6 +a6X2

(4) f2n+l fn3fn+2 +fn-l_f,+I n > 2,

(5) xf2n = f1n-fnfn+2 + fn-2fn fn+21 n > 3.

The polynomials fn are monic in x, and if n is odd, then the degree of fn
is (n2 - 1)/2. The division polynomials have the following useful properties
which will enable us to perform computations in E[n]. Theorem 1 is from [8],
while Theorem 2 is from [6].

Theorem 1. Let P = (x, y) E E* and let n > O. Then P E E[n] if and only if
fn(x) = O.

Theorem 2. Let n > 2, and let P = (x, y) E E* with nP/z 6. Then

nP= (x+ fnifn x + y + f-f + f 2f+1 + (X2 + y)
fn fn x~ +(fnv fn,)

The ring of endomorphisms of E that are defined over K is denoted by
EndK E. The map q E EndK E sending (x, y) to (xq, yq) and fixing a is
called the Frobenius endomorphism of E. In EndK E, q0 satisfies the relation

2 _tq + q = 0

for a unique t e Z. In fact, t= q + 1 - #E(K). If / is an odd prime, then E[l]
can be viewed as a vector space over F1; the vector space has dimension 2. The
map q restricted to E[l] is a linear transformation on E[l] with characteristic
equation 02 _ to + q = O.

3. OUTLINE OF SCHOOF'S ALGORITHM

We give an outline of Schoof's algorithm for computing #E(K), where K =

Fq, q = 2m, and E is given by equation (3). The method in [13] is described

410 A. J. MENEZES, S. A. VANSTONE, AND R. J. ZUCCHERATO

for fields of odd characteristic. More details for the case q even will be given
in ?4.

Let #E(Fq) = q + 1 - t. Choose a prime L' such that H1 > 4v/#, where
the product ranges over all primes / from 3 to L'. We proceed to compute t
(mod 1) for each odd prime / < L'; since iti < 2v/-, we can then recover t
by the Chinese Remainder Theorem.

Let P = (x, jy) E E[1]*, and let k -q (mod 1), 0 < k < 1 - 1. We search
for an integer T, O < T < I- 1, such that

(6) q$2(p) + kP = Tq(P).

Since q2(p) + kP = tq(P), we deduce that (t - T)q(P) = , and hence t =-

(mod 1). The problem with implementing this idea is that the coordinates of
P, which are in K, may not lie in any small extension of K, and thus cannot
be efficiently found in general. We overcome this problem by observing that
x is a root of the division polynomial f1(x) E K[x]. Moreover, we can use
Theorem 2 to obtain an expression for kP and rq(P), where the coordinates
of the expressions are rational functions in x and y. We may then use the
addition rules to sum q22(P) and kP.

To test whether there exists some P = (x, y) E E[l]* satisfying (6), we
equate the x-coordinates of the expressions for q2(p) + kP and Tq(P), and
eliminate denominators and the variable y to obtain an equation h I(x) = 0.
We then compute HI(x) = gcd(hI(x), f1(x)). If HI(x) = 1, then there is
no P E E[l]* satisfying (6). If HI (x) : 1, then there exists P E E[l]* with
+2(P) + kP = ?Tq(P). To determine the sign, we equate the y-coordinates
of the expressions for q2(p) + kP and Tq(P), eliminate denominators and
the variable y to obtain an equation h2(x) = 0, and then compute H2(x) =
gcd(h2(x), fl(x)). If H2(x) : 1, then P satisfies (6), otherwise P satisfies
+2(P) + kP = -Tq(P). Note that all computations now take place in the ring
K[x].

The running time of O(log8 q) bit operations is obtained as follows. We have
that L' = O(logq). For each 1, the search for T satisfying (6) is dominated
by the computations of the residues of Xq and yq2 modulo f1(x) (note that
/2(p) = (Xq2, yq 2)) .Since the degree of f1(x) is O(log2 q), these residues can
be computed in O(log5 q) field operations, or O(log7 q) bit operations. If fast
multiplication techniques are used for multiplication in K[x] and in Fq, then
the total running time reduces to O(log5+? q), for any e > 0. However, since
the fast multiplication techniques are only practical for very large q, we will
henceforth only use classical multiplication algorithms.

4. SOME HEURISTICS

Again, we assume that K = Fq, where q = 2m, and that the curve E has
equation (3). Let #E(Fq) = q + 1 - t, where Iti < 2v/4. From the expression
for the division polynomial f4 we can deduce that #E(Fq) 0 O (mod 4), so we
can easily determine t (mod 4).

In ??4.1 and 4.2 we describe how to find t (mod 1) , where / is an odd prime.

4.1. Finding an eigenvalue of q, if one exists. Recall from ?2 that when
viewing q as a linear transformation on E[l], the characteristic equation of q

COUNTING POINTS ON ELLIPTIC CURVES OVER F2m 411

iS 02 - tq + q = 0. Thus, q has eigenvalues in F1 if and only if either t2 - 4q
is a quadratic residue mod 1, or t2 - 4q is 0 mod 1. Assume that s, r are
eigenvalues of q in F1. The following two observations are useful.

* Since s2 - ts + q =0, we have t _ s + q/s (mod 1).
* If s : r, then let S denote the set of x-coordinates of nonzero points

in the one-dimensional eigenspace corresponding to s. Observe that if a E S,
then a3q E S; it follows that f(X) = HaES(X -) is a degree (1 - 1)/2 factor
of fi(x) in K[x].

Let w be an integer, 1 < w < (1- 1)/2 . To test whether ?w is an eigenvalue
of 0, we have to check if there exists P = (x, y) E E[l]* with 0(P) = ?wP.
Explicitly, we equate the x-coordinates of 0(P) and ?wP to obtain

Xq =X + fW-1fW+1
-f2w

Thus, the search is successful if and only if

(7) g (x) = gcd(+): 1.

The dominant step in these calculations is the computation of Xq modulo
fi(x) .

If g1 (x) : 1 , then we need to test if 0q(P) = wP or 0q(P) = -w P . The roots
of g1 (x) are the x-coordinates of points P E E[l]* satisfying 0(P) = ?wP.
If the eigenvalues of q are w and -w, then t 0_ (mod 1), and this will be
detected since the degree of g1 (x) will be / - 1 . If the eigenvalues of 0 are
the same, then g1 (x) = f1(x) or the degree of fi(x) is (1 - 1)/2. Otherwise, if
either w or -w (but not both) is one of the two eigenvalues of q in F1, then
the degree of g1 (x) is (1- 1) /2. In the following computations, all polynomials
in x are reduced modulo g1 (x) . Equating y-coordinates of 0q(P) and -wP',
and clearing denominators, we obtain the equation

(8) h(x,y) = xfy(y + yq) + fw-2fw+i + (X2 + W)fw-ifwfw+ = 0.

Since y2 = X3 + a6 + XY2, we can compute yq by repeatedly squaring y2 . After
m - 1 squarings, we obtain

yq = a(x) + b(x)y,

with a(x) and b(x) both reduced modulo g1 (x) . Equation (8) then reduces
to

a(x) + b(x)y = 0.
Substituting y = a(x)/b(x) into the equation of the curve (3) yields the fol-
lowing equation of the curve:

h(x) = a(x)2 + a(x)b(x)x + (x3 + a6)b(x)2 = 0.

Finally, if gcd(h(x), g1 (x)) = 1, then t _ w + q/w (mod 1), otherwise t
-w - q/w (mod 1) .

We comment that this method of searching for eigenvalues of q easily ex-
tends to the case q an odd prime power.

4.2. Schoof's algorithm. If there is no eigenvalue of q in Fl, i.e., if t2 - 4q
is a quadratic nonresidue mod 1, then we apply Schoof's test to determine the
T satisfying (6).

412 A. J. MENEZES, S. A. VANSTONE, AND R. J. ZUCCHERATO

We first check if there is a P = (x, y) E E[l]* with 02(p) = ?kP, where k
is q modulo 1. This is the case if and only if

gcd((xq2 + X)f2 + fk-lfk+ , f 1.

Observe that if t _ 0 (mod 1), then q2(p) = -kP. Now, if 02(p) = kP, then
+(P) = (2k/t)P, whence q has an eigenvalue in Fl. But t2 - 4q is a quadratic
nonresidue mod 1, so we conclude that 022(p) = -kP. Thus, tq(P) = a and
t _ 0 (mod 1).

Assume now that there is no P E E[l]* with q2(p) = ?kP. In order to
determine t (mod 1), we check for each T , 1 < T < / - 1, if there exists
P E E[l]* satisfying (6). Since q2(p) : ?kP, we can use the rule for adding
distinct points to compute an expression for 02(p) + kP. Explicitly, let (P)x
denote the x-coordinate of point P. Then for k > 2

(?TO(P))xq = q+ +
(9) (?-q(P))X

- X + f2q

and

(q2 (p) + kP)x = xq2 +x+ fk- fke + 1 2 +i
fk

where
(yq2 + y + X)Xfk? + fk-2fk2+1 + (X2 + X + Y)(fk- Ifkfk+1)

(I1 0) A Xfk3 (X + Xq2) + Xfik1% k (10) '~ xf~(x+x~2)kxk_lfkfk+l

Similar equations can be obtained for the case k = 1 . Equate the x-coordinates
of q22(p) + kP and ?Tq(P), and eliminate denominators and the variable y,
to get an identity h3(x) = 0. Then there exists a P E E[l]* with 02(p) + kP =
?T$(P) if and only if h4(x) = gcd(h3(x), fi(x)) $ 1 . This is repeated for
each Tr 1 < T < (1 - 1)/2, for which T 2 - 4q is a nonresidue (mod/) . If the
gcd is nontrivial, then we can determine the correct sign by first equating the
y-coordinates of 02(p) + kP and T$(P) . Explicitly, for T > 2,

fq f fqf2q f
(1 1) (Tq(P))y = Xq +yq + fT-12 +I + fT-23T+ + (x2q + q) T2T

and
(q2(P) + kP)y = ,(xq2 + x3) + X3 + yq2,

where x3 = (022(p) + kP)x and A is as in (10) (similar equations can be ob-
tained for the case T = 1). As was done above, we then proceed to eliminate
the denominator and the variable y to get an identity h5(x) = 0. Then, if
gcd(f(x), h5(X)) $ 1, we have t = T; otherwise t = -T. The dominant step
in these calculations is the computation of Xq and yq modulo f (x) .

To determine t (mod 1) in practice, one would first search for an eigenvalue
of q in F1, and if this fails, then Schoof's algorithm is applied. The first
method is faster since it only requires the residue of Xq modulo f1(x), while
the second method requires the residues Xq 5 yq, and yq2 modulo f (x) .
Heuristically, for a random curve, we would expect 0 to have an eigenvalue in
F1 (i.e., t2 - 4q is a quadratic residue in F1) for half of all l's. Moreover, if 0
does have eigenvlaues in F1, then in most cases the eigenvalues will be distinct,
and so the test if 0q(P) = wP or 0q(P) = -wP in (4. 1) takes negligible time
(since degg1(x) = (1- 1)/2 or 1- 1).

COUNTING POINTS ON ELLIPTIC CURVES OVER F2m 413

4.3. Determining t modulo / = 2C. If 1 = 2C, then the following lemma
proves that fi(x) has a factor of small degree.

Lemma 3. If l = 2c, then f, (x) has a factor f(x) of degree 1/4 in K[x].
Proof. Since E[l] - Z1, fi(x) has only 1/2 distinct roots. Of these, only 1/4
are x-coordinates of points of order 1. Thus, fi(x) has a factor f(x) of degree
1/4 in Fq[x], whose roots are precisely the x-coordinates of points of order
1. o

The next lemma shows how the factor f(x) may be easily constructed.

Lemma 4. Let I = 2c. Define the sequence ofpolynomials {gi(x)} in K[x] as
follows:

go = x,

g1 = b1 + x, where a6= bl,
i-2

gi = gi=LI + bix gJ, where a6= b?i+ , for i > 2.
j=l

Then f(x) = gc-i(x) is a degree 1/4 factor of f (x) in K[x]. Moreover, the
roots of f(x) are precisely the x-coordinates of points of order I.
Proof. Define the sequence of polynomials {hi(x)} in K[x] by

ho = , h, =x, hi=x 7Jgj. for i > 2.
j=l

Let P = (x, y) E E*, and let (2nP)x = Gn/Hn for n > 0. From the formula
for doubling a point, we see that Gn and Hn are polynomials in K[x]. We
prove by induction that Gn = (gn)2n+ and Hn = (hn)2n for n > 1 .

For n = 1 , we have

GI_ - g (b, +X)4 _ a6 2

H1 hj x2

which indeed is (2P)X . Assuming that the statement is true for n = i, we have

(2i+lp) = (21P a6H2 + Gi

(b1Hi + Gi)4 (bi+Ihi + g7)2i+2 -g)2
i2

(GiHi)2 (gi2hi)2i+l (hi+1)2i

It is also easily proved by induction that deg gn = 2n-1 for n > 1, and
gcd(gn, hn) = I for n > 0.

Now, let P = (x, y7) E E*. Since (2C-1P)x = (gc-)2c/(hcI l)2`1, we have
ord(P) = 2c if and only if gcI(Y) = 0 and g1 (Y) :$ 0 for 0 < i < c - 2.

But, since hc1 = go Ic-2 g2 and gcd(gc- I, hc- 1) = 1, we have ord(P) = 2c
if and only if gc-1(T) = 0. Finally, since deggc-l = 1/4, the desired factor
f(x) must in fact be gc-I(x). ?

For I = 2c that divides q, we have q 0 O (mod 1). Hence, for P E E[l]*,
we know that 02(p) - -q$(P) = . Since q is the Frobenius endomorphism,

414 A. J. MENEZES, S. A. VANSTONE, AND R. J. ZUCCHERATO

+(P) : a for P $ a . Therefore, 0(P) - TP= and T is an eigenvalue of q
in Z1.

Since we know that #E(Fq) 0 (mod 4), we have that t 1 (mod 4) and
=_ 1 (mod 4). This gives us only two choices for T modulo 8. We can easily

obtain this eigenvalue using a factor of f8(x) obtained as above, and using our
heuristic for finding eigenvalues. This procedure can then similarly be applied
to finding eigenvalues for / = 16, 32, 64, The method is efficient for /
being a small power of 2, since the polynomial arithmetic is performed modulo
a degree 1/4 factor of fi(x) .

4.4. Baby-step giant-step algorithm. The calculation of t modulo / using
Schoof's algorithm for small primes / is very simple. However, since deg(fi(x))
= (12 - 1)/2, the calculation quickly becomes infeasible as the value of / in-
creases. In [3], the authors combined Schoof's algorithm with Shanks' baby-
step giant-step method. In this method, one first computes #E(Fq) modulo
L = lo * 11 ** Ir, where 14, ... , Ir are small primes and lo is a small power of
2. We then use the baby-step giant-step algorithm to determine #E(Fq) .

We describe Shanks' algorithm with suitable modifications for use with
Schoof s algorithm.

Step 1. Choose a random point P in E(Fq) and set

k = min{k'lk' > FLk *4 /1, k'0 (mod L)}.

Step 2. Compute iP for i (Lq + 1 - 2v/@J - #E(Fq)) (mod L) for 0 < i <
k - 1 . If for some i we have iP = &, then return to Step 1. Otherwise, store
i and the first 32 bits of the x-coordinate of iP in a table sorted by the entry
iP.

Step 3. Set Q = kP.

Step 4. Compute
Hi= Lq+ 1 -2vjP+ jQ

for i = 1, 2, ... , k/L and check (by a binary search) whether the first 32 bits
of the x-coordinate of Hj correspond to the first 32 bits of the x-coordinate
of iP for some i. If it does, we then check if H1 = iP (by recalculating iP).
If we have only one pair (i, j) with Hj = iP, then

#E(Fq) = Lq + 1 - 2v/4j + kj - i,

and the algorithm terminates. If not, then return to Step 1.
We sketch the correctness and running time of the algorithm.
Since P E E(Fq), then ord(P) divides #E(Fq). Thus, if there exists a

unique integer r E [q + 1 - 2+/#, q + 1 + 2+/V] such that rP = &, then
r = #E(Fq); if not, then ord(P) < 4\/#. Either case is detected in Step 4. Thus
in Step 1 we hope that ord(P) > 4v/q .

Recall that E(Fq) - Zl E Z12 where n1 I n2 and n2 I (q - 1). For a
random elliptic curve, we would expect n >? n2 and so n >? 4\/4. Thus,
with very high probability, ord(P) > 4\/4. Since #E(Fq) > (V/q - 1)2, we
have n1 > q - 1. Moreover, since 4 1 #E(Fq) and n2 is odd, we have
nI > 2(v/V- 1) . If in fact nI < 4v/l, then there is no point in E(Fq) of order
greater than 4v/-. This will be detected since the algorithm will fail in Step 4

COUNTING POINTS ON ELLIPTIC CURVES OVER F2m 415

each time. If this happens, then we determine ord(P) and repeat the algorithm
until ord(P) > 2(V/- - 1) . We then search for a point P' which has order > 3
in the quotient group E(Fq)/(P). For more details, consult [3].

The table in Step 2 has about S = 2q 1/4/JT entries, which are computed
with O(S) field operations. The table is then sorted using O(SlogS) com-
parisons. Computing Hj for j = 1, 2, ... , k/L takes O(S) field operations,
while each binary search takes 0(log S) comparisons. Thus the whole algorithm
takes O(q1/4 (log q)2/VT) bit operations, and requires o(q1/4(log q)/ VT) bits
of storage.

4.5. Checking results. Let #E(Fq) = q + 1 - t, where t is unknown, and
suppose that our algorithm outputs #E(Fq) = q + 1 - t'. We may verify that
t = t' as follows.

Let P be the point in the baby-step giant-step algorithm. Since the algorithm
terminated, we believe that ord(P) > 4v/# . We first verify that (q + 1 - t')P =

; if this does not hold, then t : t'. We then proceed to factor q + 1 -t',
which is an easy task since q + 1 - t' < 1050 for the q's we are concerned with.
Given the prime factorization of q + 1 - t', we can easily determine ord(P),
and we then check that ord(P) > 4v/q. Now, since (q + 1 - t)P = a and
(q + 1 - t')P = &, we deduce that (t - t')P = a . Finally, since ord(P) > 4\/q
and It - t'I < 4\/#, we conclude that t = t'.

Of course, this check is only successful if ni > 4v/#, which, as pointed out
in ?4.4, is true for most curves.

5. IMPLEMENTATION AND RESULTS

The algorithm described in ?4 was implemented in the C programming lan-
guage on a SUN-2 SPARC station with 64 Mbytes of main memory. We make
some comments on our implementation.

(i) The elements of Fq = F2m were represented with respect to a normal
basis. This has the advantage that squaring a field element involves only a
cyclic shift of the vector representation. Explicitly, if fl is a normal basis
generator and a = ZI'1 A,fl2 , where Ai E F2, then a2 E lZI%1)i_,l22 (with
subscripts reduced modulo m). For computational efficiency in multiplying
field elements, we use the special class of normal bases known as optimal normal
bases [11]; these bases only exist for certain values of m but are perhaps the
most important for practical purposes.

(ii) Let n = degf1(x) . To compute gcd(A(x), f1(x)) for some A(x) E K[x],
we first reduce A(x) modulo fi(x), and then compute the gcd of the resulting
polynomial with fi(x) . In order to compute Xq (mod f (x)), which is needed,
for example, in (7), we precompute the residues x modulo fi(x), for 0 < j <
n - 1. Then Xq (mod fi(x)) is obtained by repeatedly squaring x . Explicitly,

x2 (mod f (x)) = (x2 (mod f(x)))2(mod f (x))
2

/n-I \ 2 n-I

= E(ajxj (modfi(x)) = a2 (x2j (modfi(x))).
j=0 ~~~~~j=0

The residues of Xq2 yq, and yq2 modulo fi(x) are obtained in a similar
manner.

416 A. J. MENEZES, S. A. VANSTONE, AND R. J. ZUCCHERATO

(iii) In calculating (9) and (11), we need to compute fq (mod f (x)), for
0 < T < (1 - 1)/2 + 1. Since we already know Xq (modfi(x)), we can easily
compute fTq (modfi(x)) recursively:

foq = 0 (modfi(x)),

fiq = 1 (mod f (x)),
f = xq (mod f (x)),

q= X4q+ X3q+ a6 (modf1(x)),

q= X6q+ a6X2q (mod f1(x)),

f2 1i fiq = + 1lJ2%+ fi3q (modf1(x)), i >2,

f2= S(x)(f2 I]fiqiq 2 + 127fiq7Ji +) (modf(x)) i> 3,

where s(x) E K[x] satisfies S(X)Xq =1 (modfi(x)). Note that indeed

gcd(x, f1(X)) = 1

when / is odd, since the only points with x-coordinates equal to 0 have order
2.

(iv) We chose l's up to 31 in order to keep manageable the size of the space
searched in the baby-step giant-step part of the method. If more memory is
available, then the cases / = 29 and / = 31 may be excluded, at the expense
of an increase in the time for the baby-step giant-step part.

Using the method of ?4.3, we also computed t modulo 64. If (t modulo
64) < 31, then we compute t modulo 128 (for this we only need the division
polynomials f1(x), 1 < i < 31, modulo the degree-32 factor of fi28(x)).
Similarly, if (t modulo 128) < 31 , we compute t modulo 256. In this way we
may compute t modulo 1024.

(v) In the baby-step giant-step algorithm we need to select points uniformly
at random from E(Fq). This is accomplished as follows. First pick a random
element x E Fq . The probablity that x is the x-coordinate of some P E E(Fq)
is roughly I; this follows from Hasse's theorem. We then attempt to solve the
equation

2 - -3
y +xy=x +a6

for y. There is a solution if and only if there is a solution to y2 +y - b, where
b = x2(Y3 + a6) . Compute b, and let

m-1 m-1
b =Z bi,82' and y = yi821.

i=O i=O

Then
m-1 m-1

-2 +y (y=Z I+y1)fl2=Z bif2A
-i=O i=O

Select yo = 0 or yo = 1 at random. Since yo + Yi = b1, this determines Y i.
Similarly, Y2 , Y3, . .. Ymr- I are determined. Finally, if Ymr- I + Yo = bo, then
(x, xj-) is a random point in E(Fq). Otherwise, Y is not the x-coordinate of
a point in E(Fq).

In Table 1, we list the time taken for the major steps in (4.1), (4.2), and (4.3)
of our algorithm for counting points on a single randomly chosen curve over

COUNTING POINTS ON ELLIPTIC CURVES OVER F2m 417

TABLE 1. Times (in seconds) for the major steps in (4.1), (4.2),
and (4.3) of the algorithm for counting points on a single ran-
domly chosen curve over Fq, q - 2155

Time to compute fi(x), 0 < i < 31 245.3
Time to compute t modulo 128 162.7 _

I l 3 5 7 11 13 17 19 23 29 31
(4.1) (a) 1.7 9.4 35.6 278.1 469.8 1231.3 2149.8 4612.9 11939.1 14170.2

(b) 0.1 0.7 1.1 31.5 69.8 89.9 458.3 1243.2 778.2 5252.0
(c) - - 13.1 - - 88.3 - - 72.3 -

(4.2) (d) 1.7 9.7 - 247.7 488.9 - 2268.1 4890.6 - 15188.2
(e) 11.5 - - 552.6 1026.8 - 4539.4 9525.4 - 28869.2

(f) 3.4 - - 495.4 977.7 - 4536.3 9805.2 - 30141.0
(g) 0.1 - - 87.2 299.7 - 2036.9 6072.8 - 22463.9
(h) 0.7 - - 173.2 177.3 - 2018.3 786.3 - 6298.5
(i) 0.9 - - 213.0 348.8 - 1831.9 3444.4 - 9971.7

Legend
(a) Compute Xq (mod fi (x)) .
(b) Search for an eigenvalue.
(c) Determine the sign of the eigenvalue.

(d) Compute Xq (mod fi (x)) .
(e) Compute yq (mod fi(x)).

(f) Compute yq2 (mod fi (x)) .
(g) Compute f.q (mod fi(x)), 0 < i < (1- 1)/2+ 1 .

(h) Search for T, 1 < T < (1 - 1)/2.

(i) Determine the sign of T.

F2155 . As was expected, the computation of x (mod fl) dominated the time
to search for an eigenvalue, while the computation of X yq, and yq modulo
fi is the dominant step in the Schoof part of the algorithm. If an eigenvalue
exists, then determining its sign takes negligible time. Observe that searching
for an eigenvalue is a useful heuristic, and results in a big time savings should
one exist. Lastly, note that the time taken to compute the division polynomials,
and to compute t modulo 128, is also negligible.

In Table 2, we list the time for the baby-step giant-step method (step (4.4))
for various problem instances. The size of the space searched is 4,/L, where
L is the product of those l's for which t modulo 1 is known.

TABLE 2. Times for the baby-step giant-step part (step (4.4))
for a curve over F2m

I's used in Size of space
m steps 4.1, 4.2, and 4.3 searched Time

33 3, 5, 64 3.9. 102 0.2 sec

52 3,5,7, 11, 128 1.8* 103 0.5 sec

65 3, 5, 7, 11, 13, 64 2.5 104 1 sec

82 3, 5, 7, 11, 13, 17, 64 5.4 105 4 sec
100 3, 5, 7, 11, 13, 17, 64 2.8 . 108 1 min 43 sec

113 3, 5, 7, 11, 13, 17, 64 2.5 . 1010 18 min 31 sec

135 3, 5, 7, 11, 13, 17, 19, 23, 64 1.2 * 101" 51 min 22 sec

148 3, 5, 7, 11, 13, 17, 19, 23, 29, 64 3.6 * 101" 100 min 42 sec

155 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 128 6.7 * 1010 44 min 11 sec

418 A. J. MENEZES, S. A. VANSTONE, AND R. J. ZUCCHERATO

Table 3. Total time for counting points on randomly
chosen curves over F2m

I's for which an eigenvalue Total running time (steps
m of q was found in F1 (4.1), (4.2), (4.3) and (4.4))
33 3 1 min 6 sec
52 3, 5, 7 4 min 51 sec
65 5 22 min 29 sec
82 3, 7, 11, 13 57 min 46 sec
100 5, 7, 11, 17 46 min 21 sec
113 3, 7, 17 1 hr 8 min 7 sec
135 3, 7, 13, 19, 23 5 hr 43 min 47 sec
148 5, 7, 11, 13, 17, 19, 29 16 hr 7 min 26 sec
155 7, 17, 29 60hr29min 33 sec

Finally, Table 3 presents the total running time of our method for evaluating
#E(F2m) for single randomly chosen curves and several values of m. For a
fixed m, the running time for counting #E(F2m) has a large variance; the
longest running times happen when no eigenvalue of 0 exists in F1 for the
largest prime l's used.

6. A SURVEY OF RECENT WORK

Let K = Fq . As observed in ?4, there is a degree (1 - 1)/2 factor f(x) of
fi (x) in K[x] for those primes l for which 0 has distinct eigenvalues in Fl. If
this factor exists and is known, then it may be used instead of fi(x) in Schoofs
algorithm for a considerable savings in time. In unpublished work, Elkies and
Miller independently showed how to construct the factor f (x) without having
to first construct fi(x). In [4], Elkies' work is modified, whereby f(x) can
be easily computed after some one-time work. These modifications reduce the
work for determining #E(K) from O(log8 q) to O(log6 q) bit operations. The
running of O(log6 q) is not rigorously proved since, for example, it is assumed
that t2 - 4q is a quadratic residue modulo l for roughly half of all odd primes
1. The method is described only for the case q an odd prime, and the gen-
eralization to the case q = 2m does not appear to be straightforward. We are
unaware of any implementations of this method.

Recently Atkin [2] described a new algorithm for computing #E(K) which
uses modular equations. For each odd prime 1, the algorithm performs opera-
tions in K[x] modulo a polynomial of degree l + 1 instead of the polynomial
fi(x) of degree (12 _ 1)/2. Each iteration determines that t (mod 1) E Si,
where S, is a subset of {0, 1, 2, ... , 1}, and where jS1j < 1/2 but usually
jS11 < 1/2. This partial information for various l's is then combined to reveal
t. Again, the algorithm has been described only for the case q an odd prime.
The algorithm has not been rigorously analyzed but performs remarkably well
in practice. It is almost certain to work when q 1050, and Atkin has recently
computed #E(K), where q is an odd prime and q 1 1068.

7. CONCLUDING REMARKS

We have implemented Schoof s algorithm along with some heuristics, and
we are able to compute #E(F2m), where E is any elliptic curve over F2m
and m < 155. For the Schoof part, we were able to compute t modulo

COUNTING POINTS ON ELLIPTIC CURVES OVER F2m 419

1 for 1 = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, and 64 (and sometimes 1 =
128, 256, 512, 1024).

Computing #E(F2155) takes roughly 61 hours on a SUN-2 SPARC station.
(The algorithm takes 61 hours or less provided that 0 has an eigenvalue in
either F29 or F31 . Heuristically, one woutd expect this to occur about 75%
of the time for random curves.) On the SPARC station, we can multiply field
elements in F2155 at the rate of 900 multiplications per second. There exists a
special purpose chip which does the field arithmetic in F2155 and can perform
250,000 multiplications per second [1]. Since roughly 90% of all time of the
algorithm is spent in multiplying field elements in F2m, the use of this chip
should reduce the time for computing #E(F2155) to about 6 hours.

Possible improvements which we did not implement are the computation of
t modulo 27, and using Pollard's Lambda method for catching kangaroos [12]
instead of the baby-step giant-step algorithm. Pollard's method has the same
expected running time as the latter method, but requires very little storage.

Finally, as pointed out by Atkin [2], we mention that the information ob-
tained from Schoof s algorithm and the heuristics presented here can be com-
bined with the information from Atkin's method to compute #E(F2m) for even
larger values of m .

ACKNOWLEDGMENT

We would like to thank an anonymous referee and A. Atkin for their careful
reading of this paper, and for suggesting some useful improvements.

BIBLIOGRAPHY

1. G. Agnew, R. Mullin, and S. Vanstone, An implementation of elliptic curve cryptosystems
over F2155 , preprint.

2. A. Atkin, The number ofpoints on an elliptic curve modulo a prime, unpublished manuscript,
1991.

3. J. Buchmann and V. Muller, Computing the number of points of elliptic curves over fi-
nitefields, presented at International Symposium on Symbolic and Algebraic Computation,
Bonn, July 1991.

4. L. Charlap, R. Coley, and D. Robbins, Enumeration of rational points on elliptic curves over
finite fields, preprint.

5. N. Koblitz, Elliptic curve cryptosystems, Math. Comp. 48 (1987), 203-209.

6. , Constructing elliptic curve cryptosystems in characteristic 2, Advances in Cryptology-
Proc. Crypto '90, Lecture Notes in Comput. Sci., vol. 537, Springer-Verlag, Berlin, 1991,
pp. 156-167.

7. , CM-curves with good cryptographic properties, Advances in Cryptology-Proc. Crypto
'91, Lecture Notes in Comput. Sci., vol. 576, Springer-Verlag, Berlin, 1992, pp. 279-287.

8. S. Lang, Elliptic curves: Diophantine analysis, Springer-Verlag, Berlin, 1978.

9. A. Menezes and S. Vanstone, Isomorphism classes of elliptic curves over finite fields of char-
acteristic 2, Utilitas Math. 38 (1990), 135-153.

10. V. Miller, Uses of elliptic curves in cryptography, Advances in Cryptology-Proc. Crypto
'85, Lecture Notes in Comput. Sci., vol. 218, Springer-Verlag, Berlin, 1986, pp. 417-426.

11. R. Mullin, I. Onyszchuk, S. Vanstone, and R. Wilson, Optimal normal bases in GF(p'),
Discrete Appl. Math. 22 (1988/89), 149-161.

420 A. J. MENEZES, S. A. VANSTONE, AND R. J. ZUCCHERATO

12. J. Pollard, Monte Carlo methods for index computation (mod p) , Math. Comp. 32 (1978),
9 18-924.

13. R. Schoof, Elliptic curves over finite fields and the computation of square roots mod p,
Math. Comp. 44 (1985), 483-494.

DEPARTMENT OF COMBINATORICS AND OPTIMIZATION, UNIVERSITY OF WATERLOO, WATERLOO,
ONTARIO N2L 3G1, CANADA

E-mail address: ajmeneze@math.waterloo.edu
E-mail address: savansto@math.waterloo.edu
E-mail address: rjzucche@math.waterloo.edu

