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COUNTING POINTS ON ELLIPTIC CURVES OVER F2m 

ALFRED J. MENEZES, SCOTT A. VANSTONE, AND ROBERT J. ZUCCHERATO 

ABSTRACT. In this paper we present an implementation of Schoof s algorithm 
for computing the number of F2m-points of an elliptic curve that is defined over 
the finite field F2m . We have implemented some heuristic improvements, and 
give running times for various problem instances. 

1. INTRODUCTION 

The use of elliptic curves in public key cryptography was first proposed by 
N. Koblitz [5] and V. Miller [10]. Since then, a significant amount of research 
has been done on the implementation of practical and secure cryptosystems 
based on elliptic curves. For a secure system, one should select a curve E over 
a finite field Fq such that the order, #E(Fq), of the group of points has a large 
prime divisor. There are some families of curves whose orders are trivial to 
compute (see [7] for some examples). However, if a random curve is chosen, 
then it is necessary to have an efficient algorithm for computing its order. 

In 1985, Schoof [13] gave a polynomial-time algorithm for computing #E(Fq). 
The algorithm has a running time of O(log8 q) bit operations, and is rather 
cumbersome in practice. In [3] the authors combined Schoof s algorithm with 
Shanks' baby-step giant-step algorithm, and were able to compute orders of 
curves over Fp, where p is a 27-decimal-digit prime. The algorithm took 4.5 
hours on a SUN-1 SPARC station. 

The work mentioned above was all described for the case q odd. From a 
practical point of view, however, curves over fields of characteristic 2 are more 
attractive, since the arithmetic in F2m is easier to implement in hardware than 
the arithmetic in Fq, q odd. In [6] Koblitz adapted Schoof s algorithm to 
curves over F2m and studied the implementation and security of a random- 
curve cryptosystem. Special emphasis was placed on the underlying field F2135 . 
Recently, Agnew, Mullin, and Vanstone [1] have developed a VLSI device to 
perform arithmetic in F2,55 and to perform computations on a random elliptic 
curve over this field. Consequently, it is of interest to determine the order of 
random curves over F2,55., 

We have implemented Schoof s algorithm for counting the points on an ar- 
bitrary curve over F2m, and have employed some heuristics to improve the 
actual running time. We are able to compute #E(F2m) for m = 155 (and so 
#E(F2m) 1047) in about 61 hours on a SUN-2 SPARC station. 
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The remainder of the paper is organized as follows. In ?2, we mention the 
relevant properties of elliptic curves over finite fields of characteristic 2. In ?3, 
we outline Schoof s algorithm, and in ?4 we present our heuristics for improving 
Schoof s algorithm. Section 5 discusses details of our implementation, and gives 
some running times for various problem instances. Finally, in ?6, we survey the 
latest research on the problem of counting points on an elliptic curve. 

2. ELLIPTIC CURVES IN CHARACTERISTIC 2 

Let q = 2m, and let K = Fq be the finite field of q elements. We denote the 
algebraic closure of K by K. If S is a field or an additive group, then S* will 
denote the nonzero elements of S. There are two types of elliptic curves over 
K. A supersingular curve E over K is the set of solutions (x, y) E K x K to 
an equation of the form 

(1) y 2+ a3y=X 3+a4x+a6, 

with a3, a4, a6 E K, a3 : 0, together with the "point at infinity" denoted 6. 
A nonsupersingular curve E over K is the set of solutions (x, y) E K x K to 
an equation of the form 

(2) y2 +xy = X3+ a2X2+ a6, 

with a2, a6 E K, a6 : 0, together with the point & . 
If L is any field with K C L C K, then let E(L) denote the set of points 

in E both of whose coordinates lie in L, together with the point a. 
There are precisely three isomorphism classes of supersingular elliptic curves 

over K if m is odd, and seven classes if m is even. The number of points 
on a curve in each class is known [9]. Given a supersingular curve (1), we can 
then compute #E(K) by determining the isomorphism class that E belongs to. 
For the remainder of the paper we will thus be interested in computing #E(K), 
where E is a nonsupersingular elliptic curve. 

There are 2q - 2 isomorphism classes of nonsupersingular curves over K. 
A set of representatives of these classes is 

{y2 +xy=x3 +a2x2 +a6la6 EK*, a2 E {O, y}}, 

where y E K is a fixed element of trace 1. If E and E are the curves y2 +xy = 
x3 + a6 and y2 + xy = X3 + yx2 + a6, respectively, then it is easily verified that 
#E(K) + #E(K) = 2q + 2. Henceforth we will always assume that the equation 
for E is of the form 

(3) y2 +xy=X3 +a6, a6 EK*. 

It is well known that E has the structure of an abelian group, with the point 
a serving as its identity element. The rules for adding points on the curve (3) 
are the following. Let P = (x1, Yi ) E E* ; then -P = (xl1, yI +xI ) . Notice that 
P and -P have the same x-coordinates. If Q = (X2, Y2) E E* and Q f -P, 
then P + Q = (X3, Y3), where 

I YI +Y2) 
2 

Y1 +Y X 

lX6 +X2, 
+ 

XI +X2 
~Xj +X2 P = Q, 
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and 
Y +Y2) (Xl+X3)+X3+YI, P#Q, 

l X2 + (XI + Xl X3 + X3, p = Q 

If K C L C K, then E(L) is a subgroup of E. If L is finite with #L =qr, 

then Hasse's theorem states that 

#E(L) = qr + 1 -t 

where Itd < 2 /4r. Thus, to compute #E(L), it suffices to compute t. 
Let n be a positive integer, and let Zn denote the cyclic group of n elements. 

The group E(K) has rank either 1 or 2; we can write E(K) Znl E Zn2, where 
n2in, and n2jq - 1. A point P E E is called an n-torsion point if nP = 

Let E[n] denote the group of n-torsion points in E. If gcd(n, q) = 1, then 
E[n] -Zn 7 Zn . If n = 2e, then either E[n] {a} if E is supersingular, or 
else E[n] 7Zn if E is nonsupersingular. 

We introduce the division polynomials fn E K[x] associated with the non- 
supersingular curve E given by the equation (2) (see [6]): 

fo=O, fi=1, f2=x, f3=x4 +x3 +a6, f4 = x6 +a6X2 

(4) f2n+l fn3fn+2 +fn-l_f,+I n > 2, 

(5) xf2n = f1n-fnfn+2 + fn-2fn fn+21 n > 3. 

The polynomials fn are monic in x, and if n is odd, then the degree of fn 
is (n2 - 1)/2. The division polynomials have the following useful properties 
which will enable us to perform computations in E[n]. Theorem 1 is from [8], 
while Theorem 2 is from [6]. 

Theorem 1. Let P = (x, y) E E* and let n > O. Then P E E[n] if and only if 
fn(x) = O. 

Theorem 2. Let n > 2, and let P = (x, y) E E* with nP/z 6. Then 

nP= (x+ fnifn x + y + f-f + f 2f+1 + (X2 + y) 
fn fn x~ +(fnv fn,) 

The ring of endomorphisms of E that are defined over K is denoted by 
EndK E. The map q E EndK E sending (x, y) to (xq, yq) and fixing a is 
called the Frobenius endomorphism of E. In EndK E, q0 satisfies the relation 

2 _tq + q = 0 

for a unique t e Z. In fact, t= q + 1 - #E(K). If / is an odd prime, then E[l] 
can be viewed as a vector space over F1; the vector space has dimension 2. The 
map q restricted to E[l] is a linear transformation on E[l] with characteristic 
equation 02 _ to + q = O. 

3. OUTLINE OF SCHOOF'S ALGORITHM 

We give an outline of Schoof's algorithm for computing #E(K), where K = 

Fq, q = 2m, and E is given by equation (3). The method in [13] is described 
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for fields of odd characteristic. More details for the case q even will be given 
in ?4. 

Let #E(Fq) = q + 1 - t. Choose a prime L' such that H1 > 4v/#, where 
the product ranges over all primes / from 3 to L'. We proceed to compute t 
(mod 1) for each odd prime / < L'; since iti < 2v/-, we can then recover t 
by the Chinese Remainder Theorem. 

Let P = (x, jy) E E[1]*, and let k -q (mod 1), 0 < k < 1 - 1. We search 
for an integer T, O < T < I- 1, such that 

(6) q$2(p) + kP = Tq(P). 

Since q2(p) + kP = tq(P), we deduce that (t - T)q(P) = , and hence t =- 

(mod 1). The problem with implementing this idea is that the coordinates of 
P, which are in K, may not lie in any small extension of K, and thus cannot 
be efficiently found in general. We overcome this problem by observing that 
x is a root of the division polynomial f1(x) E K[x]. Moreover, we can use 
Theorem 2 to obtain an expression for kP and rq(P), where the coordinates 
of the expressions are rational functions in x and y. We may then use the 
addition rules to sum q22(P) and kP. 

To test whether there exists some P = (x, y) E E[l]* satisfying (6), we 
equate the x-coordinates of the expressions for q2(p) + kP and Tq(P), and 
eliminate denominators and the variable y to obtain an equation h I(x) = 0. 
We then compute HI(x) = gcd(hI(x), f1(x)). If HI(x) = 1, then there is 
no P E E[l]* satisfying (6). If HI (x) : 1, then there exists P E E[l]* with 
+2(P) + kP = ?Tq(P). To determine the sign, we equate the y-coordinates 
of the expressions for q2(p) + kP and Tq(P), eliminate denominators and 
the variable y to obtain an equation h2(x) = 0, and then compute H2(x) = 
gcd(h2(x), fl(x)). If H2(x) : 1, then P satisfies (6), otherwise P satisfies 
+2(P) + kP = -Tq(P). Note that all computations now take place in the ring 
K[x]. 

The running time of O(log8 q) bit operations is obtained as follows. We have 
that L' = O(logq). For each 1, the search for T satisfying (6) is dominated 
by the computations of the residues of Xq and yq2 modulo f1(x) (note that 
/2(p) = (Xq2, yq 2)) .Since the degree of f1(x) is O(log2 q), these residues can 
be computed in O(log5 q) field operations, or O(log7 q) bit operations. If fast 
multiplication techniques are used for multiplication in K[x] and in Fq, then 
the total running time reduces to O(log5+? q), for any e > 0. However, since 
the fast multiplication techniques are only practical for very large q, we will 
henceforth only use classical multiplication algorithms. 

4. SOME HEURISTICS 

Again, we assume that K = Fq, where q = 2m, and that the curve E has 
equation (3). Let #E(Fq) = q + 1 - t, where Iti < 2v/4. From the expression 
for the division polynomial f4 we can deduce that #E(Fq) 0 O (mod 4), so we 
can easily determine t (mod 4). 

In ??4.1 and 4.2 we describe how to find t (mod 1) , where / is an odd prime. 

4.1. Finding an eigenvalue of q, if one exists. Recall from ?2 that when 
viewing q as a linear transformation on E[l], the characteristic equation of q 
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iS 02 - tq + q = 0. Thus, q has eigenvalues in F1 if and only if either t2 - 4q 
is a quadratic residue mod 1, or t2 - 4q is 0 mod 1. Assume that s, r are 
eigenvalues of q in F1. The following two observations are useful. 

* Since s2 - ts + q =0, we have t _ s + q/s (mod 1). 
* If s : r, then let S denote the set of x-coordinates of nonzero points 

in the one-dimensional eigenspace corresponding to s. Observe that if a E S, 
then a3q E S; it follows that f(X) = HaES(X - ) is a degree (1 - 1)/2 factor 
of fi(x) in K[x]. 

Let w be an integer, 1 < w < (1- 1)/2 . To test whether ?w is an eigenvalue 
of 0, we have to check if there exists P = (x, y) E E[l]* with 0(P) = ?wP. 
Explicitly, we equate the x-coordinates of 0(P) and ?wP to obtain 

Xq =X + fW-1fW+1 
-f2w 

Thus, the search is successful if and only if 

(7) g (x) = gcd(+ ): 1. 

The dominant step in these calculations is the computation of Xq modulo 
fi(x) . 

If g1 (x) : 1 , then we need to test if 0q(P) = wP or 0q(P) = -w P . The roots 
of g1 (x) are the x-coordinates of points P E E[l]* satisfying 0(P) = ?wP. 
If the eigenvalues of q are w and -w, then t 0_ (mod 1), and this will be 
detected since the degree of g1 (x) will be / - 1 . If the eigenvalues of 0 are 
the same, then g1 (x) = f1(x) or the degree of fi(x) is (1 - 1)/2. Otherwise, if 
either w or -w (but not both) is one of the two eigenvalues of q in F1, then 
the degree of g1 (x) is (1- 1) /2. In the following computations, all polynomials 
in x are reduced modulo g1 (x) . Equating y-coordinates of 0q(P) and -wP', 
and clearing denominators, we obtain the equation 

(8) h(x,y) = xfy(y + yq) + fw-2fw+i + (X2 + W)fw-ifwfw+ = 0. 

Since y2 = X3 + a6 + XY2, we can compute yq by repeatedly squaring y2 . After 
m - 1 squarings, we obtain 

yq = a(x) + b(x)y, 

with a(x) and b(x) both reduced modulo g1 (x) . Equation (8) then reduces 
to 

a(x) + b(x)y = 0. 
Substituting y = a(x)/b(x) into the equation of the curve (3) yields the fol- 
lowing equation of the curve: 

h(x) = a(x)2 + a(x)b(x)x + (x3 + a6)b(x)2 = 0. 

Finally, if gcd(h(x), g1 (x)) = 1, then t _ w + q/w (mod 1), otherwise t 
-w - q/w (mod 1) . 

We comment that this method of searching for eigenvalues of q easily ex- 
tends to the case q an odd prime power. 

4.2. Schoof's algorithm. If there is no eigenvalue of q in Fl, i.e., if t2 - 4q 
is a quadratic nonresidue mod 1, then we apply Schoof's test to determine the 
T satisfying (6). 
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We first check if there is a P = (x, y) E E[l]* with 02(p) = ?kP, where k 
is q modulo 1. This is the case if and only if 

gcd((xq2 + X)f2 + fk-lfk+ , f 1. 

Observe that if t _ 0 (mod 1), then q2(p) = -kP. Now, if 02(p) = kP, then 
+(P) = (2k/t)P, whence q has an eigenvalue in Fl. But t2 - 4q is a quadratic 
nonresidue mod 1, so we conclude that 022(p) = -kP. Thus, tq(P) = a and 
t _ 0 (mod 1). 

Assume now that there is no P E E[l]* with q2(p) = ?kP. In order to 
determine t (mod 1), we check for each T , 1 < T < / - 1, if there exists 
P E E[l]* satisfying (6). Since q2(p) : ?kP, we can use the rule for adding 
distinct points to compute an expression for 02(p) + kP. Explicitly, let (P)x 
denote the x-coordinate of point P. Then for k > 2 

(?TO(P))xq = q+ + 
(9) (?-q(P))X 

- X + f2q 

and 

(q2 (p) + kP)x = xq2 +x+ fk- fke + 1 2 +i 
fk 

where 
(yq2 + y + X)Xfk? + fk-2fk2+1 + (X2 + X + Y)(fk- Ifkfk+1) 

(I1 0) A Xfk3 (X + Xq2) + Xfik1% k (10) '~ xf~(x+x~2)kxk_lfkfk+l 

Similar equations can be obtained for the case k = 1 . Equate the x-coordinates 
of q22(p) + kP and ?Tq(P), and eliminate denominators and the variable y, 
to get an identity h3(x) = 0. Then there exists a P E E[l]* with 02(p) + kP = 
?T$(P) if and only if h4(x) = gcd(h3(x), fi(x)) $ 1 . This is repeated for 
each Tr 1 < T < (1 - 1)/2, for which T 2 - 4q is a nonresidue (mod/) . If the 
gcd is nontrivial, then we can determine the correct sign by first equating the 
y-coordinates of 02(p) + kP and T$(P) . Explicitly, for T > 2, 

fq f fqf2q f 
(1 1) (Tq(P))y = Xq +yq + fT-12 +I + fT-23T+ + (x2q + q) T2T 

and 
(q2(P) + kP)y = ,(xq2 + x3) + X3 + yq2, 

where x3 = (022(p) + kP)x and A is as in (10) (similar equations can be ob- 
tained for the case T = 1). As was done above, we then proceed to eliminate 
the denominator and the variable y to get an identity h5(x) = 0. Then, if 
gcd(f(x), h5(X)) $ 1, we have t = T; otherwise t = -T. The dominant step 
in these calculations is the computation of Xq and yq modulo f (x) . 

To determine t (mod 1) in practice, one would first search for an eigenvalue 
of q in F1, and if this fails, then Schoof's algorithm is applied. The first 
method is faster since it only requires the residue of Xq modulo f1(x), while 
the second method requires the residues Xq 5 yq, and yq2 modulo f (x) . 
Heuristically, for a random curve, we would expect 0 to have an eigenvalue in 
F1 (i.e., t2 - 4q is a quadratic residue in F1) for half of all l's. Moreover, if 0 
does have eigenvlaues in F1, then in most cases the eigenvalues will be distinct, 
and so the test if 0q(P) = wP or 0q(P) = -wP in (4. 1) takes negligible time 
(since degg1(x) = (1- 1)/2 or 1- 1). 
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4.3. Determining t modulo / = 2C. If 1 = 2C, then the following lemma 
proves that fi(x) has a factor of small degree. 

Lemma 3. If l = 2c, then f, (x) has a factor f(x) of degree 1/4 in K[x]. 
Proof. Since E[l] - Z1, fi(x) has only 1/2 distinct roots. Of these, only 1/4 
are x-coordinates of points of order 1. Thus, fi(x) has a factor f(x) of degree 
1/4 in Fq[x], whose roots are precisely the x-coordinates of points of order 
1. o 

The next lemma shows how the factor f(x) may be easily constructed. 

Lemma 4. Let I = 2c. Define the sequence ofpolynomials {gi(x)} in K[x] as 
follows: 

go = x, 

g1 = b1 + x, where a6= bl, 
i-2 

gi = gi=LI + bix gJ, where a6= b?i+ , for i > 2. 
j=l 

Then f(x) = gc-i(x) is a degree 1/4 factor of f (x) in K[x]. Moreover, the 
roots of f(x) are precisely the x-coordinates of points of order I. 
Proof. Define the sequence of polynomials {hi(x)} in K[x] by 

ho = , h, =x, hi=x 7Jgj. for i > 2. 
j=l 

Let P = (x, y) E E*, and let (2nP)x = Gn/Hn for n > 0. From the formula 
for doubling a point, we see that Gn and Hn are polynomials in K[x]. We 
prove by induction that Gn = (gn)2n+ and Hn = (hn )2n for n > 1 . 

For n = 1 , we have 

GI_ - g (b, +X)4 _ a6 2 

H1 hj x2 

which indeed is (2P)X . Assuming that the statement is true for n = i, we have 

(2i+lp) = (21P a6H2 + Gi 

(b1Hi + Gi)4 (bi+Ihi + g7)2i+2 -g)2 
i2 

(GiHi)2 (gi2hi)2i+l (hi+1)2i 

It is also easily proved by induction that deg gn = 2n-1 for n > 1, and 
gcd(gn, hn) = I for n > 0. 

Now, let P = (x, y7) E E*. Since (2C-1P)x = (gc- )2c/(hcI l)2`1, we have 
ord(P) = 2c if and only if gcI(Y) = 0 and g1 (Y) :$ 0 for 0 < i < c - 2. 

But, since hc1 = go Ic-2 g2 and gcd(gc- I, hc- 1) = 1, we have ord(P) = 2c 
if and only if gc-1(T) = 0. Finally, since deggc-l = 1/4, the desired factor 
f(x) must in fact be gc-I(x). ? 

For I = 2c that divides q, we have q 0 O (mod 1). Hence, for P E E[l]*, 
we know that 02(p) - -q$(P) = . Since q is the Frobenius endomorphism, 



414 A. J. MENEZES, S. A. VANSTONE, AND R. J. ZUCCHERATO 

+(P) : a for P $ a . Therefore, 0(P) - TP= and T is an eigenvalue of q 
in Z1. 

Since we know that #E(Fq) 0 (mod 4), we have that t 1 (mod 4) and 
=_ 1 (mod 4). This gives us only two choices for T modulo 8. We can easily 

obtain this eigenvalue using a factor of f8(x) obtained as above, and using our 
heuristic for finding eigenvalues. This procedure can then similarly be applied 
to finding eigenvalues for / = 16, 32, 64, .... The method is efficient for / 
being a small power of 2, since the polynomial arithmetic is performed modulo 
a degree 1/4 factor of fi(x) . 

4.4. Baby-step giant-step algorithm. The calculation of t modulo / using 
Schoof's algorithm for small primes / is very simple. However, since deg(fi(x)) 
= (12 - 1)/2, the calculation quickly becomes infeasible as the value of / in- 
creases. In [3], the authors combined Schoof's algorithm with Shanks' baby- 
step giant-step method. In this method, one first computes #E(Fq) modulo 
L = lo * 11 ** Ir, where 14, ... , Ir are small primes and lo is a small power of 
2. We then use the baby-step giant-step algorithm to determine #E(Fq) . 

We describe Shanks' algorithm with suitable modifications for use with 
Schoof s algorithm. 

Step 1. Choose a random point P in E(Fq) and set 

k = min{k'lk' > FLk *4 /1, k'0 (mod L)}. 

Step 2. Compute iP for i (Lq + 1 - 2v/@J - #E(Fq)) (mod L) for 0 < i < 
k - 1 . If for some i we have iP = &, then return to Step 1. Otherwise, store 
i and the first 32 bits of the x-coordinate of iP in a table sorted by the entry 
iP. 

Step 3. Set Q = kP. 

Step 4. Compute 
Hi= Lq+ 1 -2vjP+ jQ 

for i = 1, 2, ... , k/L and check (by a binary search) whether the first 32 bits 
of the x-coordinate of Hj correspond to the first 32 bits of the x-coordinate 
of iP for some i. If it does, we then check if H1 = iP (by recalculating iP). 
If we have only one pair (i, j) with Hj = iP, then 

#E(Fq) = Lq + 1 - 2v/4j + kj - i, 

and the algorithm terminates. If not, then return to Step 1. 
We sketch the correctness and running time of the algorithm. 
Since P E E(Fq), then ord(P) divides #E(Fq). Thus, if there exists a 

unique integer r E [q + 1 - 2+/#, q + 1 + 2+/V] such that rP = &, then 
r = #E(Fq); if not, then ord(P) < 4\/#. Either case is detected in Step 4. Thus 
in Step 1 we hope that ord(P) > 4v/q . 

Recall that E(Fq) - Zl E Z12 where n1 I n2 and n2 I (q - 1). For a 
random elliptic curve, we would expect n >? n2 and so n >? 4\/4. Thus, 
with very high probability, ord(P) > 4\/4. Since #E(Fq) > (V/q - 1)2, we 
have n1 > q - 1. Moreover, since 4 1 #E(Fq) and n2 is odd, we have 
nI > 2(v/V- 1) . If in fact nI < 4v/l, then there is no point in E(Fq) of order 
greater than 4v/-. This will be detected since the algorithm will fail in Step 4 
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each time. If this happens, then we determine ord(P) and repeat the algorithm 
until ord(P) > 2(V/- - 1) . We then search for a point P' which has order > 3 
in the quotient group E(Fq)/(P). For more details, consult [3]. 

The table in Step 2 has about S = 2q 1/4/JT entries, which are computed 
with O(S) field operations. The table is then sorted using O(SlogS) com- 
parisons. Computing Hj for j = 1, 2, ... , k/L takes O(S) field operations, 
while each binary search takes 0(log S) comparisons. Thus the whole algorithm 
takes O(q1/4 (log q)2/VT) bit operations, and requires o(q1/4(log q)/ VT) bits 
of storage. 

4.5. Checking results. Let #E(Fq) = q + 1 - t, where t is unknown, and 
suppose that our algorithm outputs #E(Fq) = q + 1 - t'. We may verify that 
t = t' as follows. 

Let P be the point in the baby-step giant-step algorithm. Since the algorithm 
terminated, we believe that ord(P) > 4v/# . We first verify that (q + 1 - t')P = 

; if this does not hold, then t : t'. We then proceed to factor q + 1 -t', 
which is an easy task since q + 1 - t' < 1050 for the q's we are concerned with. 
Given the prime factorization of q + 1 - t', we can easily determine ord(P), 
and we then check that ord(P) > 4v/q. Now, since (q + 1 - t)P = a and 
(q + 1 - t')P = &, we deduce that (t - t')P = a . Finally, since ord(P) > 4\/q 
and It - t'I < 4\/#, we conclude that t = t'. 

Of course, this check is only successful if ni > 4v/#, which, as pointed out 
in ?4.4, is true for most curves. 

5. IMPLEMENTATION AND RESULTS 

The algorithm described in ?4 was implemented in the C programming lan- 
guage on a SUN-2 SPARC station with 64 Mbytes of main memory. We make 
some comments on our implementation. 

(i) The elements of Fq = F2m were represented with respect to a normal 
basis. This has the advantage that squaring a field element involves only a 
cyclic shift of the vector representation. Explicitly, if fl is a normal basis 
generator and a = ZI'1 A,fl2 , where Ai E F2, then a2 E lZI%1 )i_,l22 (with 
subscripts reduced modulo m). For computational efficiency in multiplying 
field elements, we use the special class of normal bases known as optimal normal 
bases [11]; these bases only exist for certain values of m but are perhaps the 
most important for practical purposes. 

(ii) Let n = degf1(x) . To compute gcd(A(x), f1(x)) for some A(x) E K[x], 
we first reduce A(x) modulo fi(x), and then compute the gcd of the resulting 
polynomial with fi(x) . In order to compute Xq (mod f (x)), which is needed, 
for example, in (7), we precompute the residues x modulo fi(x), for 0 < j < 
n - 1. Then Xq (mod fi(x)) is obtained by repeatedly squaring x . Explicitly, 

x2 (mod f (x)) = (x2 (mod f(x)))2(mod f (x)) 
2 

/n-I \ 2 n-I 

= E( ajxj (modfi(x)) = a2 (x2j (modfi(x))). 
j=0 ~~~~~j=0 

The residues of Xq2 yq, and yq2 modulo fi(x) are obtained in a similar 
manner. 
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(iii) In calculating (9) and (11), we need to compute fq (mod f (x)), for 
0 < T < (1 - 1)/2 + 1. Since we already know Xq (modfi(x)), we can easily 
compute fTq (modfi(x)) recursively: 

foq = 0 (modfi(x)), 

fiq = 1 (mod f (x)), 
f = xq (mod f (x)), 

q= X4q+ X3q+ a6 (modf1(x)), 

q= X6q+ a6X2q (mod f1(x)), 

f2 1i fiq = + 1lJ2%+ fi3q (modf1(x)), i >2, 

f2= S(x)(f2 I]fiqiq 2 + 127fiq7Ji +) (modf(x)) i> 3, 

where s(x) E K[x] satisfies S(X)Xq =1 (modfi(x)). Note that indeed 

gcd(x, f1(X)) = 1 

when / is odd, since the only points with x-coordinates equal to 0 have order 
2. 

(iv) We chose l's up to 31 in order to keep manageable the size of the space 
searched in the baby-step giant-step part of the method. If more memory is 
available, then the cases / = 29 and / = 31 may be excluded, at the expense 
of an increase in the time for the baby-step giant-step part. 

Using the method of ?4.3, we also computed t modulo 64. If (t modulo 
64) < 31, then we compute t modulo 128 (for this we only need the division 
polynomials f1(x), 1 < i < 31, modulo the degree-32 factor of fi28(x)). 
Similarly, if ( t modulo 128) < 31 , we compute t modulo 256. In this way we 
may compute t modulo 1024. 

(v) In the baby-step giant-step algorithm we need to select points uniformly 
at random from E(Fq). This is accomplished as follows. First pick a random 
element x E Fq . The probablity that x is the x-coordinate of some P E E(Fq) 
is roughly I; this follows from Hasse's theorem. We then attempt to solve the 
equation 

2 - -3 
y +xy=x +a6 

for y. There is a solution if and only if there is a solution to y2 +y - b, where 
b = x2(Y3 + a6) . Compute b, and let 

m-1 m-1 
b =Z bi,82' and y = yi821. 

i=O i=O 

Then 
m-1 m-1 

-2 +y (y=Z I+y1)fl2=Z bif2A 
-i=O i=O 

Select yo = 0 or yo = 1 at random. Since yo + Yi = b1, this determines Y i. 
Similarly, Y2 , Y3, . .. Ymr- I are determined. Finally, if Ymr- I + Yo = bo, then 
(x, xj-) is a random point in E(Fq). Otherwise, Y is not the x-coordinate of 
a point in E(Fq). 

In Table 1, we list the time taken for the major steps in (4.1), (4.2), and (4.3) 
of our algorithm for counting points on a single randomly chosen curve over 
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TABLE 1. Times (in seconds) for the major steps in (4.1), (4.2), 
and (4.3) of the algorithm for counting points on a single ran- 
domly chosen curve over Fq, q - 2155 

Time to compute fi(x), 0 < i < 31 245.3 
Time to compute t modulo 128 162.7 _ 

I l 3 5 7 11 13 17 19 23 29 31 
(4.1) (a) 1.7 9.4 35.6 278.1 469.8 1231.3 2149.8 4612.9 11939.1 14170.2 

(b) 0.1 0.7 1.1 31.5 69.8 89.9 458.3 1243.2 778.2 5252.0 
(c) - - 13.1 - - 88.3 - - 72.3 - 

(4.2) (d) 1.7 9.7 - 247.7 488.9 - 2268.1 4890.6 - 15188.2 
(e) 11.5 - - 552.6 1026.8 - 4539.4 9525.4 - 28869.2 

(f) 3.4 - - 495.4 977.7 - 4536.3 9805.2 - 30141.0 
(g) 0.1 - - 87.2 299.7 - 2036.9 6072.8 - 22463.9 
(h) 0.7 - - 173.2 177.3 - 2018.3 786.3 - 6298.5 
(i) 0.9 - - 213.0 348.8 - 1831.9 3444.4 - 9971.7 

Legend 
(a) Compute Xq (mod fi (x)) . 
(b) Search for an eigenvalue. 
(c) Determine the sign of the eigenvalue. 

(d) Compute Xq (mod fi (x)) . 
(e) Compute yq (mod fi(x)). 

(f) Compute yq2 (mod fi (x)) . 
(g) Compute f.q (mod fi(x)), 0 < i < (1- 1)/2+ 1 . 

(h) Search for T, 1 < T < (1 - 1)/2. 

(i) Determine the sign of T. 

F2155 . As was expected, the computation of x (mod fl) dominated the time 
to search for an eigenvalue, while the computation of X yq, and yq modulo 
fi is the dominant step in the Schoof part of the algorithm. If an eigenvalue 
exists, then determining its sign takes negligible time. Observe that searching 
for an eigenvalue is a useful heuristic, and results in a big time savings should 
one exist. Lastly, note that the time taken to compute the division polynomials, 
and to compute t modulo 128, is also negligible. 

In Table 2, we list the time for the baby-step giant-step method (step (4.4)) 
for various problem instances. The size of the space searched is 4,/L, where 
L is the product of those l's for which t modulo 1 is known. 

TABLE 2. Times for the baby-step giant-step part (step (4.4)) 
for a curve over F2m 

I's used in Size of space 
m steps 4.1, 4.2, and 4.3 searched Time 

33 3, 5, 64 3.9. 102 0.2 sec 

52 3,5,7, 11, 128 1.8* 103 0.5 sec 

65 3, 5, 7, 11, 13, 64 2.5 104 1 sec 

82 3, 5, 7, 11, 13, 17, 64 5.4 105 4 sec 
100 3, 5, 7, 11, 13, 17, 64 2.8 . 108 1 min 43 sec 

113 3, 5, 7, 11, 13, 17, 64 2.5 . 1010 18 min 31 sec 

135 3, 5, 7, 11, 13, 17, 19, 23, 64 1.2 * 101" 51 min 22 sec 

148 3, 5, 7, 11, 13, 17, 19, 23, 29, 64 3.6 * 101" 100 min 42 sec 

155 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 128 6.7 * 1010 44 min 11 sec 
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Table 3. Total time for counting points on randomly 
chosen curves over F2m 

I's for which an eigenvalue Total running time (steps 
m of q was found in F1 (4.1), (4.2), (4.3) and (4.4)) 
33 3 1 min 6 sec 
52 3, 5, 7 4 min 51 sec 
65 5 22 min 29 sec 
82 3, 7, 11, 13 57 min 46 sec 
100 5, 7, 11, 17 46 min 21 sec 
113 3, 7, 17 1 hr 8 min 7 sec 
135 3, 7, 13, 19, 23 5 hr 43 min 47 sec 
148 5, 7, 11, 13, 17, 19, 29 16 hr 7 min 26 sec 
155 7, 17, 29 60hr29min 33 sec 

Finally, Table 3 presents the total running time of our method for evaluating 
#E(F2m) for single randomly chosen curves and several values of m. For a 
fixed m, the running time for counting #E(F2m) has a large variance; the 
longest running times happen when no eigenvalue of 0 exists in F1 for the 
largest prime l's used. 

6. A SURVEY OF RECENT WORK 

Let K = Fq . As observed in ?4, there is a degree (1 - 1)/2 factor f(x) of 
fi (x) in K[x] for those primes l for which 0 has distinct eigenvalues in Fl. If 
this factor exists and is known, then it may be used instead of fi(x) in Schoofs 
algorithm for a considerable savings in time. In unpublished work, Elkies and 
Miller independently showed how to construct the factor f (x) without having 
to first construct fi(x). In [4], Elkies' work is modified, whereby f(x) can 
be easily computed after some one-time work. These modifications reduce the 
work for determining #E(K) from O(log8 q) to O(log6 q) bit operations. The 
running of O(log6 q) is not rigorously proved since, for example, it is assumed 
that t2 - 4q is a quadratic residue modulo l for roughly half of all odd primes 
1. The method is described only for the case q an odd prime, and the gen- 
eralization to the case q = 2m does not appear to be straightforward. We are 
unaware of any implementations of this method. 

Recently Atkin [2] described a new algorithm for computing #E(K) which 
uses modular equations. For each odd prime 1, the algorithm performs opera- 
tions in K[x] modulo a polynomial of degree l + 1 instead of the polynomial 
fi(x) of degree (12 _ 1)/2. Each iteration determines that t (mod 1) E Si, 
where S, is a subset of {0, 1, 2, ... , 1}, and where jS1j < 1/2 but usually 
jS11 < 1/2. This partial information for various l's is then combined to reveal 
t. Again, the algorithm has been described only for the case q an odd prime. 
The algorithm has not been rigorously analyzed but performs remarkably well 
in practice. It is almost certain to work when q 1050, and Atkin has recently 
computed #E(K), where q is an odd prime and q 1 1068. 

7. CONCLUDING REMARKS 

We have implemented Schoof s algorithm along with some heuristics, and 
we are able to compute #E(F2m), where E is any elliptic curve over F2m 
and m < 155. For the Schoof part, we were able to compute t modulo 
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1 for 1 = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, and 64 (and sometimes 1 = 
128, 256, 512, 1024). 

Computing #E(F2155) takes roughly 61 hours on a SUN-2 SPARC station. 
(The algorithm takes 61 hours or less provided that 0 has an eigenvalue in 
either F29 or F31 . Heuristically, one woutd expect this to occur about 75% 
of the time for random curves.) On the SPARC station, we can multiply field 
elements in F2155 at the rate of 900 multiplications per second. There exists a 
special purpose chip which does the field arithmetic in F2155 and can perform 
250,000 multiplications per second [1]. Since roughly 90% of all time of the 
algorithm is spent in multiplying field elements in F2m, the use of this chip 
should reduce the time for computing #E(F2155) to about 6 hours. 

Possible improvements which we did not implement are the computation of 
t modulo 27, and using Pollard's Lambda method for catching kangaroos [12] 
instead of the baby-step giant-step algorithm. Pollard's method has the same 
expected running time as the latter method, but requires very little storage. 

Finally, as pointed out by Atkin [2], we mention that the information ob- 
tained from Schoof s algorithm and the heuristics presented here can be com- 
bined with the information from Atkin's method to compute #E(F2m) for even 
larger values of m . 
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